(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 1th argument of plus: plus, times
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
div(div(x, y), z) → div(x, times(y, z))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
plus(s(x), y) → s(plus(x, y))
times(s(x), y) → plus(y, times(x, y))
quot(x, 0, s(z)) → s(div(x, s(z)))
plus(x, 0) → x
plus(0, y) → y
div(0, y) → 0
div(x, y) → quot(x, y, y)
times(s(0), y) → y
quot(s(x), s(y), z) → quot(x, y, z)
times(0, y) → 0
quot(0, s(y), z) → 0
Rewrite Strategy: INNERMOST
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
quot(z0, 0, s(z1)) → s(div(z0, s(z1)))
quot(s(z0), s(z1), z2) → quot(z0, z1, z2)
quot(0, s(z0), z1) → 0
div(0, z0) → 0
div(z0, z1) → quot(z0, z1, z1)
Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
PLUS(z0, 0) → c1
PLUS(0, z0) → c2
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
TIMES(s(0), z0) → c4
TIMES(0, z0) → c5
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(0, s(z0), z1) → c8
DIV(0, z0) → c9
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
PLUS(z0, 0) → c1
PLUS(0, z0) → c2
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
TIMES(s(0), z0) → c4
TIMES(0, z0) → c5
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(0, s(z0), z1) → c8
DIV(0, z0) → c9
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:none
Defined Rule Symbols:
plus, times, quot, div
Defined Pair Symbols:
PLUS, TIMES, QUOT, DIV
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing nodes:
PLUS(0, z0) → c2
QUOT(0, s(z0), z1) → c8
TIMES(s(0), z0) → c4
TIMES(0, z0) → c5
DIV(0, z0) → c9
PLUS(z0, 0) → c1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
quot(z0, 0, s(z1)) → s(div(z0, s(z1)))
quot(s(z0), s(z1), z2) → quot(z0, z1, z2)
quot(0, s(z0), z1) → 0
div(0, z0) → 0
div(z0, z1) → quot(z0, z1, z1)
Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:none
Defined Rule Symbols:
plus, times, quot, div
Defined Pair Symbols:
PLUS, TIMES, QUOT, DIV
Compound Symbols:
c, c3, c6, c7, c10
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
quot(z0, 0, s(z1)) → s(div(z0, s(z1)))
quot(s(z0), s(z1), z2) → quot(z0, z1, z2)
quot(0, s(z0), z1) → 0
div(0, z0) → 0
div(z0, z1) → quot(z0, z1, z1)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:none
Defined Rule Symbols:
times, plus
Defined Pair Symbols:
PLUS, TIMES, QUOT, DIV
Compound Symbols:
c, c3, c6, c7, c10
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(PLUS(x1, x2)) = 0
POL(QUOT(x1, x2, x3)) = x1
POL(TIMES(x1, x2)) = 0
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(plus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(times(x1, x2)) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
Defined Rule Symbols:
times, plus
Defined Pair Symbols:
PLUS, TIMES, QUOT, DIV
Compound Symbols:
c, c3, c6, c7, c10
(11) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
K tuples:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
Defined Rule Symbols:
times, plus
Defined Pair Symbols:
PLUS, TIMES, QUOT, DIV
Compound Symbols:
c, c3, c6, c7, c10
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(QUOT(x1, x2, x3)) = 0
POL(TIMES(x1, x2)) = x1
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(plus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(times(x1, x2)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
K tuples:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
Defined Rule Symbols:
times, plus
Defined Pair Symbols:
PLUS, TIMES, QUOT, DIV
Compound Symbols:
c, c3, c6, c7, c10
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(s(z0), z1) → c(PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(DIV(x1, x2)) = 0
POL(PLUS(x1, x2)) = x1
POL(QUOT(x1, x2, x3)) = 0
POL(TIMES(x1, x2)) = [2]x1·x2
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(plus(x1, x2)) = [2] + [2]x1 + [2]x2 + x22 + [2]x1·x2 + [2]x12
POL(s(x1)) = [2] + x1
POL(times(x1, x2)) = [1] + x1 + x2 + x22 + x1·x2 + x12
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
Tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
S tuples:none
K tuples:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
PLUS(s(z0), z1) → c(PLUS(z0, z1))
Defined Rule Symbols:
times, plus
Defined Pair Symbols:
PLUS, TIMES, QUOT, DIV
Compound Symbols:
c, c3, c6, c7, c10
(17) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(18) BOUNDS(1, 1)